Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2304604

ABSTRACT

The EphrinB2/EphB4 signaling pathway involves the regulation of vascular morphogenesis and angiogenesis. However, little is known about EphrinB2/EphB4 in the pathogenesis of Kawasaki disease (KD) and coronary artery aneurysm formation. Hence, this study aimed to explore the role of EphrinB2/EphB4 and the potential therapeutic effect of EphrinB2-Fc in the coronary arterial endothelial injury of KD. The levels of EphB4 were compared between KD patients and healthy children. Human coronary artery endothelial cells (HCAECs) were stimulated with sera from acute KD patients to establish the KD cell model. The overexpression of EphB4 or treatment with EphrinB2-Fc was found to intervene in the cell model. The cell migration, angiogenesis, and proliferation ability were assessed, and the expression of inflammation-related factors was measured. Our study showed that EphB4 showed low expression in both KD patients and the cell model of KD. The EphB4 protein levels in the CECs of CAA+ KD patients were much lower than those in healthy children. EphrinB2-Fc treatment of KD sera-activated HCAECs suppressed cell proliferation, reduced the expression of inflammation-related factors (such as IL-6 and P-selectin), and elevated cell angiogenesis ability. The results reveal that EphrinB2-Fc has a protective function in endothelial cells and has promising clinical applications for protecting vascular endothelium in patients with KD.

2.
Pediatr Rheumatol Online J ; 20(1): 112, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2162383

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a new syndrome with some clinical manifestations similar to Kawasaki disease (KD), which is difficult to distinguish. OBJECTIVE: The study aimed to characterize the demographic characteristics, clinical characteristics, laboratory features, cardiac complications, and treatment of MIS-C compared with KD. STUDY DESIGN: Studies were selected by searching the PubMed, EMBASE and so on before February 28, 2022. Statistical analyses were performed using Review Manager 5.4 software and STATA 14.0. RESULTS: Fourteen studies with 2928 participants were included. MIS-C patients tended to be older and there was no significant difference in the sex ratio. In terms of clinical characteristics, MIS-C patients were more frequently represented with respiratory, gastrointestinal symptoms and shock. At the same time, they had a lower incidence of conjunctivitis than KD patients. MIS-C patients had lower lymphocyte counts, platelet (PLT) counts, erythrocyte sedimentation rates (ESRs), alanine transaminase (ALT), and albumin levels and had higher levels of aspartate transaminase (AST), N-terminal pro-B-type natriuretic peptide (NT-pro-BNP), troponin, C-reactive protein (CRP), D-dimer, fibrinogen, ferritin, and creatinine. MIS-C patients had a higher incidence of left ventricle (LV) dysfunction, valvular regurgitation, pericardial effusion, myocarditis, and pericarditis. The incidence of coronary artery lesion (CAL) was lower in MIS-C patients [OR (95% CI): 0.52 (0.29, 0.93), p =0.03], while it was similar in the acute period. MIS-C patients had higher utilization of glucocorticoids (GCs) and lower utilization of intravenous immune globulin (IVIG). CONCLUSIONS: There were specific differences between MIS-C and KD, which might assist clinicians with the accurate recognition of MIS-C and further mechanistic research.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Child , Humans , Mucocutaneous Lymph Node Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/etiology , Immunoglobulins, Intravenous/therapeutic use , C-Reactive Protein
3.
Frontiers in nutrition ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1940331

ABSTRACT

Background It has been speculated that patients with sarcopenia are aggravated by the current novel coronavirus disease 2019 (COVID-19) epidemic. However, there is substantial uncertainty regarding the prevalence of sarcopenia in patients with COVID-19. Objectives The purpose of the study was to systematically evaluate the prevalence of sarcopenia in patients with COVID-19, including stratification by gender, study location, study population, study design, and diagnostic criteria. Design This is the systematic literature review and meta-analysis. Methods An electronic search was performed in MEDLINE/PubMed, Embase, Cochrane Library, and Web of Science and Scopus to identify observational studies reporting a prevalence estimate for sarcopenia in patients with COVID-19. Studies were reviewed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and a meta-analysis was performed. Risk of bias (RoB) was assessed using the Newcastle–Ottawa Scale (NOS) for cohort studies and Joanna Briggs Institute (JBI) manual for cross-sectional studies, and Stata 14.0 was used to perform meta-analyses. Results A total of 4,639 studies were initially identified. After removing the duplicates and applying the selection criteria, we reviewed 151 full-text studies. A total of 21 studies, including 5,407 patients, were eligible for inclusion in this review finally. The prevalence of sarcopenia in patients with COVID-19 in individual studies varied from 0.8 to 90.2%. The pooled prevalence of sarcopenia in COVID-19 was 48.0% (95% confidence interval, CI: 30.8 to 65.1%, I2 = 99.68%, p = 0.000). We did not find any significant differences in the prevalence estimates between gender specificity (OR = 1.34;95% CI = 0.80–2.26;p = 0.001). By sex, the prevalence was 42.5% (95% CI: 31.7 to 53.4%) in men and 35.7% (95% CI: 24.2 to 47.2%) in women. The prevalence estimates significantly varied based on population settings and different diagnostic criteria of sarcopenia. ICU patients (69.7, 95% CI: 51.7 to 85.2%) were more likely to suffer from sarcopenia compared to other population settings. Conclusion To our knowledge, this is the first meta-analysis reporting on the prevalence of sarcopenia in patients with COVID-19. Sarcopenia is frequently observed in patients with COVID-19, with varying prevalence across population settings. This study would be useful for clinicians to prompt the increasing awareness of identifying sarcopenia and developing interventions at patients with COVID-19 with high risk of sarcopenia. Further prospective longitudinal studies to define the association of sarcopenia and its prognostic outcomes in COVID-19 survivors are urgently needed to propose the most appropriate treatment strategies during their admission and discharge. Systematic Review Registration [www.crd.york.ac.uk/prospero/], identifier [CRD42022300431].

4.
Front Cardiovasc Med ; 9: 831143, 2022.
Article in English | MEDLINE | ID: covidwho-1775651

ABSTRACT

Objectives: This study aimed to investigate the differences in the characteristics, management, and clinical outcomes of patients with and that of those without coronavirus disease 2019 (COVID-19) infection who had ST-segment elevation myocardial infarction (STEMI). Methods: Databases including Web of Science, PubMed, Cochrane Library, and Embase were searched up to July 2021. Observational studies that reported on the characteristics, management, or clinical outcomes and those published as full-text articles were included. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of all included studies. Results: A total of 27,742 patients from 13 studies were included in this meta-analysis. Significant delay in symptom onset to first medical contact (SO-to-FMC) time (mean difference = 23.42 min; 95% CI: 5.85-40.99 min; p = 0.009) and door-to-balloon (D2B) time (mean difference = 12.27 min; 95% CI: 5.77-18.78 min; p = 0.0002) was observed in COVID-19 patients. Compared to COVID-19 negative patients, those who are positive patients had significantly higher levels of C-reactive protein, D-dimer, and thrombus grade (p < 0.05) and showed more frequent use of thrombus aspiration and glycoprotein IIbIIIa (Gp2b3a) inhibitor (p < 0.05). COVID-19 positive patients also had higher rates of in-hospital mortality (OR = 5.98, 95% CI: 4.78-7.48, p < 0.0001), cardiogenic shock (OR = 2.75, 95% CI: 2.02-3.76, p < 0.0001), and stent thrombosis (OR = 5.65, 95% CI: 2.41-13.23, p < 0.0001). They were also more likely to be admitted to the intensive care unit (ICU) (OR = 4.26, 95% CI: 2.51-7.22, p < 0.0001) and had a longer length of stay (mean difference = 4.63 days; 95% CI: 2.56-6.69 days; p < 0.0001). Conclusions: This study revealed that COVID-19 infection had an impact on the time of initial medical intervention for patients with STEMI after symptom onset and showed that COVID-19 patients with STEMI were more likely to have thrombosis and had poorer outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL